Kolmogorov Superposition Theorem and its application to wavelet image decompositions

نویسندگان

  • Pierre-Emmanuel Leni
  • Yohan D. Fougerolle
  • Frédéric Truchetet
چکیده

This paper deals with the decomposition of multivariate functions into sums and compositions of monovariate functions. The global purpose of this work is to find a suitable strategy to express complex multivariate functions using simpler functions that can be analyzed using well know techniques, instead of developing complex Ndimensional tools. More precisely, most of signal processing techniques are applied in 1D or 2D and cannot easily be extended to higher dimensions. We recall that such a decomposition exists in the Kolmogorov’s superposition theorem. According to this theorem, any multivariate function can be decomposed into two types of univariate functions, that are called inner and external functions. Inner functions are associated to each dimension and linearly combined to construct a hash-function that associates every point of a multidimensional space to a value of the real interval [0, 1]. Every inner function is the argument for one external function. The external functions associate real values in [0, 1] to the image by the multivariate function of the corresponding point of the multidimensional space. Sprecher, in Ref. 1, has proved that internal functions can be used to construct space filling curves, i.e. there exists a curve that sweeps the multidimensional space and uniquely matches corresponding values into [0, 1]. Our goal is to obtain both a new decomposition algorithm for multivariate functions (at least bi-dimensional) and adaptive space filling curves. Two strategies can be applied. Either we construct fixed internal functions to obtain space filling curves, which allows us to construct an external function such that their sums and compositions exactly correspond to the multivariate function; or the internal function is constructed by the algorithm and is adapted to the multivariate function, providing different space filling curves for different multivariate functions. We present two of the most recent constructive algorithms of monovariate functions. The first method is due to Sprecher (Ref. 2 and Ref. 3). We provide additional explanations to the existing algorithm and present several decomposition results for gray level images. We point out the main drawback of this method: all the function parameters are fixed, so the univariate functions cannot be modified; precisely, the inner function cannot be modified and so the space filling curve. The number of layers depends on the dimension of the decomposed function. The second algorithm, proposed by Igelnik in Ref. 4, increases the parameters flexibility, but only approximates the monovariate functions: the number of layers is variable, a neural networks optimizes the monovariate functions and the weights associated to each layer to ensure convergence to the decomposed multivariate function. We have implemented both Sprecher’s and Igelnik’s algorithms and present the results of the decompositions of gray level images. There are artifacts in the reconstructed images, which leads us to apply the algorithm on wavelet decomposition images. We detail the reconstruction quality and the quantity of information contained in Igelnik’s network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kolmogorov Superposition Theorem and Wavelets for image compression

We propose a new compression approached based on the decomposition of images into continuous monovariate functions, which provide adaptability over the quantity of information taken into account to define the monovariate functions: only a fraction of the pixels of the original image have to be contained in the network used to build the correspondence between monovariate functions. The Kolmogoro...

متن کامل

Kolmogorov Superposition Theorem and Wavelet Decomposition for Image Compression

Kolmogorov Superposition Theorem stands that any multivariate function can be decomposed into two types of monovariate functions that are called inner and external functions: each inner function is associated to one dimension and linearly combined to construct a hash-function that associates every point of a multidimensional space to a value of the real interval [0, 1]. These intermediate value...

متن کامل

On the Training of a Kolmogorov Network

The Kolmogorov theorem gives that the representation of continuous and bounded real-valued functions of n variables by the superposition of functions of one variable and addition is always possible. Based on the fact that each proof of the Kolmogorov theorem or its variants was a constructive one so far, there is the principal possibility to attain such a representation. This paper reviews a pr...

متن کامل

An Algorithm for Computing Lipschitz Inner Functions in Kolmogorov's Superposition Theorem

Kolmogorov famously proved in [6] that multivariate continuous functions can be represented as a superposition of a small number of univariate continuous functions, f(x1, . . . , xn) = 2n+1

متن کامل

Wavelet Sampling and Localization Schemes for the Radon Transform in Two Dimensions

Two theorems are presented for wavelet decompositions of the two-dimensional Radon transform. The first theorem establishes an upper error bound in L-norm between the Radon transform and its wavelet approximation whose coefficients at different scales are estimated from Radon data acquired at corresponding sampling rates. The second theorem gives an estimate of the accuracy of a local image rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009